Viscoelastic properties of an isolated polymer chain with arbitrary flexibility, chain length and hydrodynamic interactions from 4-dimensional Dirac propagator

Author(s):  
Hansol Cho ◽  
In-Jae Chung
2021 ◽  
Vol 155 (3) ◽  
pp. 034701
Author(s):  
Emily Y. Lin ◽  
Amalie L. Frischknecht ◽  
Karen I. Winey ◽  
Robert A. Riggleman

Langmuir ◽  
2021 ◽  
Author(s):  
Hyeong Jin Kim ◽  
Wenjie Wang ◽  
Honghu Zhang ◽  
Guillaume Freychet ◽  
Benjamin M. Ocko ◽  
...  

Author(s):  
Kristin Holzworth ◽  
Gregory Williams ◽  
Bedri Arman ◽  
Zhibin Guan ◽  
Gaurav Arya ◽  
...  

The basis of this research is to mitigate shock through material design. In this work, we seek to develop an understanding of parametric variations in polyurea-based nano-composite materials through experimental characterization and computational modeling. Blast-mitigating applications often utilize polyurea due to its excellent thermo-mechanical properties. Polyurea is a microphase-separated segmented block copolymer formed by the rapid reaction of an isocyanate component and an amine component. Block copolymers exhibit unique properties as a result of their phase-separated morphology, which restricts dissimilar block components to microscopic length scales. The soft segments form a continuous matrix reinforced by the hard segments that are randomly dispersed as microdomains. The physical properties of the separate phases influence the overall properties of the polyurea. While polyurea offers a useful starting point, control over crystallite size and morphology is limited. For compositing, the blending approach allows superb control of particle size, shape, and density; however, the hard/soft interface is typically weak for simple blends. Here, we overcome this issue by developing hybrid polymer grafted nanoparticles, which have adjustable exposed functionality to control both their spatial distribution and interface. These nano-particles have tethered polymer chains that can interact with their surrounding environment and provide a method to control well defined and enhanced nano-composites. This approach allows us to adjust a number of variables related to the hybrid polymer grafted nanoparticles including: core size and shape, core material, polymer chain length, polymer chain density, and monomer type. In this work, we embark on a parametric study focusing on the effect of silica nanoparticle size, polymer chain length, and polymer chain density. Preliminary results from experimental characterization and computational modeling indicate that the dynamic mechanical properties of the material can be significantly altered through such parametric modifications. These efforts are part of an ongoing initiative to develop elastomeric composites with optimally designed compositions and characteristics to manage blast-induced stress-wave energy.


2018 ◽  
Vol 20 (26) ◽  
pp. 18056-18065 ◽  
Author(s):  
Pierre-Arnaud Artola ◽  
Bernard Rousseau ◽  
Carine Clavaguéra ◽  
Marion Roy ◽  
Dominique You ◽  
...  

We show that molecular simulations are able to describe iron(ii) complexation by polyacrylic acid, thus preventing oxide precipitation in the secondary coolant circuit of nuclear power plant. Complexation is favoured with increasing polymer chain length.


Sign in / Sign up

Export Citation Format

Share Document